Non-destructive Evaluation of Workpiece Properties along the Hybrid Bearing Bushing Process Chain

authored by
Lara Vivian Fricke, Susanne Elisabeth Thürer, Christoph Kahra, Susanne Bährisch, Sebastian Herbst, Florian Nürnberger, Bernd Arno Behrens, Hans Jürgen Maier, Christian Klose, Sebastian Barton
Abstract

To combine the advantages of two materials, hybrid bulk metal workpieces are attractive for subsequent processes such as metal forming. However, hybrid materials rely on the initial bond strength for the effective transfer of applied loads. Thus, a non-destructive evaluation of the bonding along the production process chain is of high interest. To evaluate to what extent non-destructive testing can be employed to monitor the bonding quality between the joining partners steel and aluminum and to characterize the age hardening condition of the aluminum component, ultrasonic testing and electrical conductivity measurements were applied. It was found that a lateral angular co-extrusion process can create homogeneous bonding although the electrical conductivity of the aluminum is altered during processing. A previous bonding before the subsequent die forging process leads to a sufficient bonding in areas with little deformation and is therefore, advantageous compared to unjoined semi-finished products, which do not form a bonding if the deformation ratio is too small.

Organisation(s)
Institute of Materials Science
Institute of Metal Forming and Metal Forming Machines
Type
Article
Journal
Journal of Materials Engineering and Performance
Volume
32
Pages
7004-7015
No. of pages
12
ISSN
1059-9495
Publication date
08.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Materials Science(all), Mechanics of Materials, Mechanical Engineering
Electronic version(s)
https://doi.org/10.1007/s11665-022-07598-3 (Access: Open)
 

Details in the research portal "Research@Leibniz University"